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Influence functional from a bath of coupled time-dependent harmonic oscillators
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The influence functional from a heat bath consisting of coupled harmonic oscillators of time-dependent
frequency and coupling constants is derived. Like its time-independent counterpart, the present influence
functional also involves the force-force autocorrelation function of the bath.@S1063-651X~99!12201-3#
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I. INTRODUCTION

Any system in real world is hardly separated from t
environment. Due to the interaction with a large number
environmental degrees of freedom which act as a heat b
the dynamics of the system becomes dissipative. In class
mechanics, the dynamics of the system is for practical p
poses stochastic and is well described by the Langevin e
tion. By contrast, the quantum behavior of dissipative s
tems presents a more subtle problem and there exist
robust model that is easily quantized while capturing
known dynamic features in the classical limit@1,2#. At
present, one of the most convenient approaches to quan
dissipative dynamics is the method of Feynman and Ver
@3,4#, in which the effects of the heat bath enter into t
reduced density matrix through an influence function
These authors obtained a closed-form expression for the
fluence functional from an ensemble of independent h
monic oscillators interacting with the system of interest vi
bilinear potential term. Their theory has been popularized
Caldeira and Leggett, who suggested that the harmonic
cillator bath provides a good approximation to real dissi
tive systems@5,6#. Many efforts have been made to establi
a general quantum theory of dissipation; important
proaches include the master equation developed by Zwa
in the sixties@7#, the Lindblad method@8#, the quantum ver-
sion of the Langevin equation@9#, and a model-free analysi
based on the fluctuation-dissipation theorem@10#.

In all former studies the heat bath is assumed to be st
This is an exact picture in most cases where the environm
is stable, as in the case of the phonons of a crystalline s
It is also accurate in the linear response limit, that is, wh
the environment is adequately represented by a bath of fi
tious harmonic oscillators characterized by an effective sp
tral density@11#. However, the static description may bre
down if the environment changes rapidly. A typical examp
is offered by processes in atomic or molecular liquids if t
harmonic bath is defined in terms of the instantaneous
mal modes of the fluid along a given classical trajectory@12#.

Rather than attempting to tackle specific problems,
present paper is concerned with the influence functional fr
a dynamic heat bath. The composite Hamiltonian is assu
to be of the form

H~ t !5H01Hb~ t !1H int~ t !, ~1.1!

whereH0 is the Hamiltonian describing the system of inte
est, possibly including driving fields that are supposed no
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act on the heat bath,Hb(t) is the Hamiltonian of the dynamic
heat bath, andH int(t) is the system-bath interaction term
Note that the specific form of the system Hamiltonian is n
relevant for the purpose of deriving the influence function
In this article we focus on a dynamic bosonic bath consist
of harmonic oscillators whose frequencies change with tim
This situation arises naturally in the instantaneous nor
mode description of fluids@12#. Further, we choose a bilinea
form for the interaction between the system of the ba
namely,

H int~ t !5sc̃~ t !•x,

where s is the coordinate of the system,c(t) is the time-
dependent coupling vector, andx is the coordinate of the
bath. In the above equation and throughout this paper
tilde denotes the transpose of a matrix.

Adopting the uncoupled initial condition of Caldeira an
Leggett@6#, we write the influence functional in the form

F@s1,s2#5Trb$Ur@s1#rb~0!Ur
21@s2#%. ~1.2!

Here Ur@s# is the time evolution operator along a syste
path corresponding to the driven bath described by
Hamiltonian

Hr~ t ![Hb~ t !1H int„s~ t !… ~1.3!

and

rb~0!5
1

Z
e2bHb~0! ~1.4a!

is the equilibrium density operator of the bath at the ve
instant that the system starts to interact with the bath an

Z5Trb$e
2bHb~0!% ~1.4b!

is the quantum partition function.
In Sec. II we calculate the influence functional for a on

dimensional time-dependent harmonic bath. Section III de
with the multidimensional case where the bath is descri
by a force constant matrix which includes off-diagonal co
plings. In Sec. IV we show that the kernel in the obtain
expressions is given by the force autocorrelation function
the bath, ensemble averaged with respect to the initial d
sity of the latter. A summary and brief concluding remar
are given in Sec. V.
269 ©1999 The American Physical Society
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270 PRE 59JIUSHU SHAO AND NANCY MAKRI
II. ONE-DIMENSIONAL TIME-DEPENDENT
HARMONIC BATH

In mass weighted coordinates the HamiltonianHr(t)
reads

Hr~ t !5
p2

2
1

1

2
v2~ t !x22cs~ t !x. ~2.1!

The propagator is

G~x,t;x8,0![^xuUr@s#ux8&

5N~ t !exp@2A~ t !x22B~ t !x82

2C~ t !xx82D~ t !x82E~ t !x#, ~2.2!

where

A~ t !52
i

2\
Ṙb~ t !Rb

21~ t !, ~2.3a!

B~ t !52
i

2\
Ṙa~ t !Rb

21~ t !, ~2.3b!

C~ t !5
i

\
Rb

21~ t !, ~2.3c!

D~ t !5
i

\
u~ t !Rb

21~ t !, ~2.3d!

E~ t !52
i

\ E
0

t

dt8 f ~ t8!Rb~ t8!Rb
21~ t !, ~2.3e!

and the normalization constant is

N~ t !5@2p i\Rb~ t !#21/2 expH 2
i

2 F u̇~ t !u~ t !

2u2~ t !Ṙb~ t !Rb
21~ t !1E

0

t

dt8 f ~ t8!u~ t8!G J .

~2.3f!

In these formulasf (t)5c(t)s(t) andRa,b(t) obey the homo-
geneous second-order differential equation

R̈a,b~ t !1v2~ t !Ra,b~ t !50 ~2.4!

with initial conditions

Ra~0!51, Ṙa~0!50,

Rb~0!50, Ṙb~0!51. ~2.5!

One sees thatRa,b(t) are the trajectories of the classical ha
monic oscillator with different initial settings. Similarly, th
function u(t) is determined by the inhomogeneous differe
tial equation

ü~ t !1v2~ t !u~ t !1 f ~ t !50 ~2.6!
-

with the initial conditionu(0)50 andu̇(0)50; that is,u(t)
is the trajectory of the driven harmonic oscillator describ
by Hr(t), starting at rest.

To evaluate the influence functional, we exploit the i
variance of the trace with respect to cyclic permutations a
write Eq. ~1.2! as

F@s1,s2#5
1

Z
Trb$Ur

21@s21#Ur@s1#e2bHb~0!%. ~2.7!

In the one-dimensional case the partition function is

Z5
1

2 sinh@\bv~0!/2#
.

It is convenient to calculate the trace over the heat bath
configuration space:

F@s1,s2#5
1

Z E
2`

`

dxE
2`

`

dx8^xuUr
21@s2#Ur@s1#ux8&

3^x8ue2bHb~0!ux&. ~2.8!

The second factor in the integrand is the density matrix e
ment for a static harmonic bath and is given by the expr
sion

^x8ue2bHb~0!ux&5A v~0!

2p sinh@\bv~0!#

3expH 2v~0!

2 sinh@\bv~0!#

3$~x21x82!cosh@\bv~0!#22xx8%J .

We evaluate the first factor using the known form of t
propagator, namely,

^xuUr
21@s2#Ur@s1#ux8&

5E
2`

`

dx1G2* ~x1 ,t;x,0!G1~x1 ,t;x8,0!,

where the subscripts6 refer to the harmonic oscillator
driven by the external fieldss6(t). Use of Eq.~2.2! leads to
the result

^xuUr
21@s2#Ur@s1#ux8&

5
2p

u iC~ t !u
N1~ t !N2~ t !exp@B~ t !~x22x82!

1D2~ t !x2D1~ t !x8#d„x2x81y~ t !… ~2.9!

where

y~ t !5E
0

t

dt8@ f 1~ t8!2 f 2~ t8!#Rb~ t8!

and no indices are displayed if parameters in the propag
do not depend on external fields. By virtue of this result, o
of the integrals in Eq.~2.8! is eliminated, while the second
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PRE 59 271INFLUENCE FUNCTIONAL FROM A BATH OF COUPLED . . .
involves a Gaussian function and can be explicitly cal
lated. The resulting influence functional can be cast in
form of an exponential,

F@s1,s2#5exp@F~ t !#,

where the influence phaseF(t)3 @3# is a complex function
the real and imaginary parts of which read, respectively,

Re$F~ t !%52
1

4\v~0!
@v2~ t !y2~ t !2z2~ t !#

3coth@\bv~0!/2# ~2.10!

and

Im F~ t !5
1

2\
H u̇2~ t !u2~ t !2u̇1~ t !u1~ t !

1
Ṙb~ t !

Rb~ t !
@u1

2 ~ t !2u2
2 ~ t !#J

1
1

2\ E
0

t

dt8@ f 2~ t8!u2~ t8!2 f 1~ t8!u1~ t8!#

1
i

2
@D1~ t !1D2~ t !#y~ t !, ~2.11!

where

z~ t !5\„D2~ t !2D1~ t !22y~ t !B~ t !…. ~2.12!

To simplify this result we express the trajectoriesu6(t) of
the driven system in terms of the solutionsRa,b(t) of the
homogeneous problem and the external fieldsf 6(t). Note
that in analogy with the equation of motion of the undriv
harmonic oscillator

R̈~ t !1v2~ t !R~ t !50

the Green’s function is

G~ t,t8!5
1

D
@j~ t !j* ~ t8!2j* ~ t !j~ t8!#u~ t2t8!,

~2.13!

where j(t)5Ra(t)1 iRb(t), D52i is the Wronskian, and
u(t2t8) is the Heaviside step function. The trajectories
the driven harmonic oscillator are

u6~ t !52E
0

`

dt8 f 6~ t8!G~ t,t8!

5E
0

t

dt8 f 6~ t8!@Ra~ t !Rb~ t8!2Rb~ t !Ra~ t8!#.

~2.14!

Inserting the result into Eq.~2.13! and using also the formula
of y(t), we obtain

z~ t !5 i E
0

t

dt8@ f 1~ t8!2 f 2~ t8!#Ra~ t8!. ~2.15!
-
e

f

With these expressions, the real part of the influence ph
Eq. ~2.7! becomes

Re F~ t !52
1

2\ E
0

t

dt8E
0

t

dt9@ f 1~ t8!2 f 2~ t8!#

3@ f 1~ t9!2 f 2~ t9!#M1~ t8,t9,b!, ~2.16!

where

M1~ t8,t9,b!5
1

2v~0!
@v2~0!Rb~ t8!Rb~ t9!1Ra~ t8!Ra~ t9!#

3coth@\bv~0!/2#. ~2.17!

Similarly, the imaginary part becomes

Im F~ t !52
1

\ E
0

t

dt8E
0

t8
dt9@ f 1~ t8!2 f 2~ t8!#

3@ f 1~ t9!1 f 2~ t9!#M2~ t8,t9!, ~2.18!

where

M2~ t8,t9!5 1
2 @Ra~ t8!Rb~ t9!2Rb~ t8!Ra~ t9!#. ~2.19!

Thus, the influence functional can be recast in the form si
lar to that of the conventional, static harmonic oscillat
bath:

F@s1,s2#5expH 2
1

\ E
0

t

dt8E
0

t8
dt9@s1~ t8!2s2~ t8!#

3@a~ t8,t9!s1~ t9!2a* ~ t8,t9!s2~ t9!#J ,

~2.20!

where the phase kernel is

a~ t8,t9!5c~ t8!c~ t9!@M1~ t8,t9,b!1 iM 2~ t8,t9!#.
~2.21!

Unlike the case of a static harmonic bath, the present ke
a(t8,t9) is not a function of time displacement but depen
on both time points. In Sec. IV we will prove that as in th
time-independent case,a(t8,t9) is nothing but the force au
tocorrelation function.

III. MULTIDIMENSIONAL BATH OF COUPLED
TIME-DEPENDENT HARMONIC OSCILLATORS

In this section we extend the calculation of the influen
functional to a multidimensional bath of coupled harmon
oscillators with time-dependent parameters. The Hamilton
of the heat bath is

Hb~ t !5 1
2 @ p̃•p1 x̃•v2~ t !•x#, ~3.1!

wherex and p are coordinate and momentum vectors, a
v2(t) is the force constant matrix, which is assumed to
symmetric without loss of generality.

In order to derive the influence functional in the multid
mensional case we use the propagator recently derived
Macek in the presence of an external field@13#. The tradi-
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tional method of deriving the propagator for a collection
uncoupled harmonic oscillators is not easily applicable to
coupled case. Macek postulated a Gaussian form and d
mined the coefficients of the various terms by comparing
resulting propagated wave function to the direct solution
the Schro¨dinger equation@13#. The result is

G~x,t;x8,0![^xuUr@s#ux8&

5N~ t !exp~2 x̃•A~ t !•x2 x̃•B~ t !•x8

2 x̃–C~ t !•x82D̃~ t !•x82Ẽ~ t !•x!, ~3.2!

whereN(t) is a ~scalar! normalization constant,A(t), B(t),
andC(t) are matrices, andD(t) andE(t) are vectors given
by the equations

A~ t !52
i

2\
Ṙb~ t !•Rb

21~ t !, ~3.3a!

B~ t !52
i

2\
Ṙa~ t !•Rb

21~ t !, ~3.3b!

C~ t !5
i

\
@R̃b~ t !#21, ~3.3c!

D~ t !5
i

\
Rb

21~ t !•u~ t !, ~3.3d!

E~ t !52
i

\
@R̃b~ t !#21

•E
0

t

dt8R̃b~ t8!•f~ t8! ~3.3e!

and

N~ t !5$det@2p i\Rb~ t !#%21/2

3expH 2
i

2\ S u̇̃~ t !•u~ t !2ũ~ t !•Ṙb~ t !•Rb
21~ t !•u~ t !

1E
0

t

dt8 f̃~ t8!•u~ t8! D J , ~3.3f!

where the driving force isf(t)5s(t)c(t), the square matrix
functionsRa,b(t) are classical trajectories of the force-fre
harmonic bath that satisfy the equation

R̈a,b~ t !1v2~ t !•Ra,b~ t !50 ~3.4!

with initial conditions

Ra~0!51, Ṙa~0!50,

Rb~0!50, Ṙb~0!51.

and the trajectoryu(t) is determined by Newton’s equation

ü~ t !1v2~ t !•u~ t !1f~ t !50, ~3.5!

starting from a static positionu(0)50 and u̇(0)50. Note
that both Ṙ(t)•R21(t) and B(t) are symmetric matrices
Again, we employ the Green’s function technique to obta
f
e
er-
e
f

u~ t !5E
0

t

dt8@Ra~ t !2Rb~ t !•Rb
21~ t8!•Ra~ t8!#•R̃b~ t8!•f~ t8!.

~3.6!

The derivation, though more tedious, is very similar
that performed with scalar functions in section II. To outlin
the main points, the forward-backward propagator ma
takes the form

^xuUr
21@s2#Ur@s1#ux8&

5
2pN1~ t !N2~ t !

udet„i C̃~ t !…u

3exp$x̃•B~ t !•x2 x̃8•B~ t !•x8

1D̃2~ t !•x2D̃1~ t !•x8%d„x2x81y~ t !…, ~3.7!

where

y~ t !5E
0

t

dt8R̃b~ t8!•@ f1~ t8!2f2~ t8!#. ~3.8!

When the Gaussian integration is completed, the influe
functional is feasibly recast in exponential formF@s1,s2#
5exp@F(t)#. The real and imaginary parts of the influen
phaseF(t) become, respectively,

Re F~ t !

52
1

2\ E
0

t

dt8E
0

t

dt9„f̃1~ t8!2 f̃2~ t8!…

•M1~ t8,t9,b!•„f1~ t9!1f2~ t9!…, ~3.9!

and

Im F~ t !

52
1

2\ E
0

t

dt8E
0

t8
dt9„f̃1~ t8!2 f̃2~ t8!…

•M2~ t8,t9,b!•„f1~ t9!1f2~ t9!…, ~3.10!

where

M1~ t8,t9,b!5 1
2 Rb~ t8!•v~0!•coth@b\v~0!/2#•R̃b~ t9!

1 1
2 Ra~ t8!•v21~0!coth@\bv~0!/2#•R̃a~ t9!

and

M2~ t8,t9!5 1
2 @Ra~ t8!•R̃b~ t9!2Rb~ t8!•R̃a~ t9!#.
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Since M1 is a symmetric matrix, the influence function
assumes the form

F@s1,s2#5expH 2
1

\ E
0

t

dt8E
0

t8
dt9„s1~ t8!2s2~ t8!…

3@a~ t8,t9!s1~ t9!2a* ~ t8,t9!s2~ t9!#J ,

~3.11!

where the phase kernel is

a~ t8,t9!5 c̃~ t8!•„M1~ t8,t9,b!1 iM2~ t8,t9!…•c~ t9!

[ c̃~ t8!•M ~ t8,t9,b!•c~ t9!. ~3.12!

In the above equation the temperature dependence of
kernel has been suppressed. According to these result
influence functional for a multidimensional time-depende
harmonic bath takes the same form as that for a o
dimensional oscillator.

IV. PHASE KERNEL AND FORCE AUTOCORRELATION
FUNCTION

Since the phase kernela(t8,t9) is seen to contain all in-
formation about the couplings to the bath, one expects
function to be related to the force the system experiences
the case of a static bath,a(t8,t9) is equal to the autocorre
lation function of that force@3,4#. As shown below, this is
also true of a time-dependent bath. From Eq.~3.11! one
readily works out the second-order functional derivativ
namely,

d2F

ds1~ t8!ds1~ t9!
U

s1,s250

52
1

\2 $u~ t82t9!a~ t8,t9!1u~ t92t8!a~ t9,t8!%.

~3.13!

With the definition of the influence functional Eq.~1.2!, tak-
ing the second functional derivative gives
he
the
t
e-

is
In

,

d2F

ds1~ t8!ds1~ t9!
U

s1,s250

52
1

\2

1

Z
Trb$T̂„c̃~ t8!•x~ t8!c̃~ t9!•x~ t9!…e2bH~0!%

52
1

\2 u~ t82t9!^c̃~ t8!•x~ t8!c̃~ t9!•x~ t9!&

2
1

\2 u~ t92t8!^c̃~ t8!•x~ t9!c̃~ t9!•x~ t8!&, ~3.14!

where T̂ is the chronological time-ordering operator, th
brackets denote the ensemble average with respect to
initial density matrix, and the coordinate operators are in
interaction representation. Comparing the two formulas,
recognizes that

a~ t8,t9!5^c̃~ t8!•x~ t8!c̃~ t9!•x~ t9!&. ~3.15!

Recall that the system-bath coupling term isH int(t)5sc̃(t)
•x. Thus thea(t8,t9) enjoys a nice interpretation: it is th
autocorrelation function of the force operating on the syst
by the bath. Note that the derived result holds for the m
general influence functional of Gaussian form.

The real and imaginary parts of the influence function
correspond to the classical and quantum contributions,
spectively, and display different features in temporal local
For a static harmonic oscillator bath, it has been shown
the temporal nonlocality in the classical factor can be
moved by introducing auxiliary fields, but quantum nonl
cality defies such localization@14#. One may draw the sam
conclusion upon recognizing that the real phase kernel
be written as the product of two functions of one time arg
ment.

V. SUMMARY

Using the propagator derived by Macek@13#, we have
derived the influence functional from a bath of couple
time-dependent harmonic oscillators. It turns out that the
fluence functional is determined by the classical trajectory
the undriven harmonic oscillator and that the kernel of
phase functional is the force-force autocorrelation functi
These features are similar to the static harmonic oscilla
bath. Note, however, that the classical trajectory of the tim
dependent oscillator defies an analytic solution. To imp
ment the influence functional in practical problems o
should resort to numerical or approximate solutions@15,16#.
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