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Influence functional from a bath of coupled time-dependent harmonic oscillators
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The influence functional from a heat bath consisting of coupled harmonic oscillators of time-dependent
frequency and coupling constants is derived. Like its time-independent counterpart, the present influence
functional also involves the force-force autocorrelation function of the h&th063-651X%99)12201-3

PACS numbd(s): 05.90+m

[. INTRODUCTION act on the heat bath,(t) is the Hamiltonian of the dynamic
heat bath, andH;,(t) is the system-bath interaction term.

Any system in real world is hardly separated from theNote that the specific form of the system Hamiltonian is not
environment. Due to the interaction with a large number ofrelevant for the purpose of deriving the influence functional.
environmental degrees of freedom which act as a heat batlm this article we focus on a dynamic bosonic bath consisting
the dynamics of the system becomes dissipative. In classicaf harmonic oscillators whose frequencies change with time.
mechanics, the dynamics of the system is for practical purThis situation arises naturally in the instantaneous normal
poses stochastic and is well described by the Langevin equaode description of fluidglL2]. Further, we choose a bilinear
tion. By contrast, the quantum behavior of dissipative sysform for the interaction between the system of the bath,
tems presents a more subtle problem and there exists nmamely,
robust model that is easily quantized while capturing all
known dynamic features in the classical linjit,2]. At Hip(t) = SE(1) - X,
present, one of the most convenient approaches to quantum
dissipative dynamics is the method of Feynman and Vernowheres is the coordinate of the systern(t) is the time-
[3,4], in which the effects of the heat bath enter into thedependent coupling vector, andis the coordinate of the
reduced density matrix through an influence functionalbath. In the above equation and throughout this paper the
These authors obtained a closed-form expression for the irilde denotes the transpose of a matrix.
fluence functional from an ensemble of independent har- Adopting the uncoupled initial condition of Caldeira and
monic oscillators interacting with the system of interest via aLeggett[6], we write the influence functional in the form
bilinear potential term. Their theory has been popularized by
Caldeira and Leggett, who suggested that the harmonic os- F[s*,s ]=Tr,{U,[s"1pp(0)U; [s71}. 1.2
cillator bath provides a good approximation to real dissipa-
tive systemg5,6]. Many efforts have been made to establishHere U,[s] is the time evolution operator along a system
a general quantum theory of dissipation; important appath corresponding to the driven bath described by the
proaches include the master equation developed by Zwanzigamiltonian
in the sixtieg 7], the Lindblad method8], the quantum ver-
sion of the Langevin equatidi®], and a model-free analysis H,(t)=Hp(t) +Hju(s(t)) 1.3
based on the fluctuation-dissipation theorgi].

In all former studies the heat bath is assumed to be stati@and
This is an exact picture in most cases where the environment
is stable, as in the case of the phonons of a crystalline solid. _
It is also accurate in the linear res limi i pp(0)= 5 e Ael® (1.43

ponse limit, that is, when Z

the environment is adequately represented by a bath of ficti-

tious harmonic oscillators characterized by an effective speGs the equilibrium density operator of the bath at the very

tral density[11]. However, the static description may break instant that the system starts to interact with the bath and
down if the environment changes rapidly. A typical example

is offered by processes in atomic or molecular liquids if the Z=Try{e FHo(O} (1.4b
harmonic bath is defined in terms of the instantaneous nor-
mal modes of the fluid along a given classical trajecfd8]. s the quantum partition function.

Rather than attempting to tackle specific problems, the |n Sec. Il we calculate the influence functional for a one-
present paper is concerned with the influence functional frongimensional time-dependent harmonic bath. Section I1l deals
a dynamic heat bath. The composite Hamiltonian is assumegith the multidimensional case where the bath is described

to be of the form by a force constant matrix which includes off-diagonal cou-
plings. In Sec. IV we show that the kernel in the obtained
H(t)=Ho+Hp(t) +Hin(t), (1.)  expressions is given by the force autocorrelation function of

the bath, ensemble averaged with respect to the initial den-
whereH,, is the Hamiltonian describing the system of inter- sity of the latter. A summary and brief concluding remarks
est, possibly including driving fields that are supposed not t@re given in Sec. V.
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II. ONE-DIMENSIONAL TIME-DEPENDENT
HARMONIC BATH

In mass weighted coordinates the Hamiltonibi(t)
reads

2

Hr(t):%+%w2(t)x2—cs(t)x. (2.2
The propagator is
G(x,t;x",00=(x|U,[s]|x")
=N(t)exd — A(t)x>—B(t)x'?
—C(t)xx' =D(t)x' —E(t)x], (2.2
where
A= 5 Ry(DR; (1), (239
B(t)=— ZI_h Ra(t) Ry (1), (2.3b
C(t)=7 Ry (1), (2.39
D(t)= 3 u(BR, (1), (239
i t
E()=—+ fodt’f(t’)Rb(t’)Rgl(t), (2.30
and the normalization constant is
i
N(t)=[2miAR,(t)] 1?2 exp[ — 3 [u®u(t)
i t
—u2(t)Rb(t)Rg1(t)+f dt’ f(t")u(t’) ]
0
(2.3f)

In these formulag(t) =c(t)s(t) andR, ,(t) obey the homo-
geneous second-order differential equation

Rab(t)+ @?(t)Ry p(t) =0 (2.9
with initial conditions
Ra(0)=1, R,(0)=0,
R,(0)=0, R,(0)=1. (2.5

One sees theR, y(t) are the trajectories of the classical har-
monic oscillator with different initial settings. Similarly, the
functionu(t) is determined by the inhomogeneous differen-
tial equation

U(t)+ w?(t)u(t) + f(t)=0 (2.6)
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with the initial conditionu(0)=0 andu(0)=0; that is,u(t)
is the trajectory of the driven harmonic oscillator described
by H,(t), starting at rest.

To evaluate the influence functional, we exploit the in-
variance of the trace with respect to cyclic permutations and
write Eq.(1.2) as

F[st,s ]= % Tr{U, s U, [s"]e e}, (2.7)

In the one-dimensional case the partition function is

1
2= S it ABw(0)2]°

It is convenient to calculate the trace over the heat bath in
configuration space:

F[s*,s ]= % j:dledx’(x|Ur_l[s‘]Ur[s+]|x’>

X (x"|e” PHpO)|x), (2.9

The second factor in the integrand is the density matrix ele-
ment for a static harmonic bath and is given by the expres-

sion
o(0)

(x'[e”Prio@]x) = \/277 sini{ % Bw(0)]

p{ —w(0)
X ex

2sinfjiBw(0)]
X{(x?+x'?)coshz Bw(0)]—2xx'} } .

We evaluate the first factor using the known form of the
propagator, namely,

(XU [s™IU[s"IIX)
=ch dx;G* (X4,1;X,00G . (Xq,t;x',0),

where the subscripts: refer to the harmonic oscillators
driven by the external fields™(t). Use of Eq.(2.2) leads to
the result

(XU [s7IU[sT]Ix")

2T L (ON_ (Dexd B(H) (= x'2)
S lic] T
+D_(t)x—D ()X Jo(x—x"+y(t)) (2.9

where

t
y(t>=fodt'[n(t')—ut’)]Rb(t')

and no indices are displayed if parameters in the propagator
do not depend on external fields. By virtue of this result, one
of the integrals in Eq(2.8) is eliminated, while the second
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involves a Gaussian function and can be explicitly calcu-With these expressions, the real part of the influence phase
lated. The resulting influence functional can be cast in thé&q. (2.7) becomes

form of an exponential,
F[s*,s ]=exd ®(1)],

where the influence phask(t)® [3] is a complex function
the real and imaginary parts of which read, respectively,

Re{d(t)}=— ! [w?(t)y?(t) —Z%(1)]
47w (0)

X cot{ % Bw(0)/2] (2.10

and

Im q)(t):%{ U_(Du_(t) — U (Hu(t)

Rb(t) 2 2
+m[u+(t)—u(t)]]

1 ! ! ! ! ! !
+ 5 fodt [f-(t)u_(t") = f(t)u.(t)]

+2[D,(0+D_ Oy, (211

where
z(t)=A(D_(t1) —D . (t)—2y(t)B(1)). (212

To simplify this result we express the trajectories(t) of
the driven system in terms of the solutioRg ,(t) of the
homogeneous problem and the external fidid¢t). Note

that in analogy with the equation of motion of the undriven

harmonic oscillator

R(t) + 0?(t)R(t)=0

the Green'’s function is

1
G(t,t")= 1 [ () - & (D) ]o(t—t"),
(2.13
where &£(t) =R, (t) +iRy(t), A=2i is the Wronskian, and

0(t—t") is the Heaviside step function. The trajectories of

the driven harmonic oscillator are

u.(t)y=-— j:dt’fi(t’)G(t,t’)

t
=fodt’ft(t’)[Ra(t)Rb(t’)—Rb(t)Ra(t’)]-

(2.19

Inserting the result into Eq2.13 and using also the formula
of y(t), we obtain

t
z(t)=ifodt’[h(t’)—f_(t’)]Ra(t’). (2.19

1
Red(t)=— o+ (:dt’ f;dt"[n(t')—f_(t’)]

X[F ()= f_ ()Mt 1,8), (216
where
Mt 8)= 555 [0 (ORu(1)Ru(t") + Ra(t)Ra(1")]
X coti 7 Bw(0)/2]. (2.17
Similarly, the imaginary part becomes
1 ! ’ t 7 A '
Im d)(t):—g fodt fo dt’[f.(t")—f_(t")]
X[FL () + () Mot t7), (2.18

where
M(t',t") =3[ Ra(t )Rp(t") —Ry(t")Ry(t")]. (2.19

Thus, the influence functional can be recast in the form simi-
lar to that of the conventional, static harmonic oscillator
bath:

+ e~ 71— _Et/t,/r+1_—/
F[s",s ]—exp[ hfodt fo dt"[sT(t")—s (t')]

X[a(t/'t/r)s+(t/1)_ (1* (t/'tr/)s—(t/l)]],

(2.20

where the phase kernel is

a(t' t")=c(t")ct[My(t',t", B) +iM(t' ,t")].
(2.20)

Unlike the case of a static harmonic bath, the present kernel
a(t’,t”) is not a function of time displacement but depends
on both time points. In Sec. IV we will prove that as in the
time-independent case(t’,t") is nothing but the force au-
tocorrelation function.

IIl. MULTIDIMENSIONAL BATH OF COUPLED
TIME-DEPENDENT HARMONIC OSCILLATORS

In this section we extend the calculation of the influence
functional to a multidimensional bath of coupled harmonic
oscillators with time-dependent parameters. The Hamiltonian
of the heat bath is

Hp(t)=3[P-p+%X- w*(1)-X], (3.9
wherex andp are coordinate and momentum vectors, and
w?(t) is the force constant matrix, which is assumed to be
symmetric without loss of generality.

In order to derive the influence functional in the multidi-
mensional case we use the propagator recently derived by
Macek in the presence of an external fi¢k8]. The tradi-
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tional method of deriving the propagator for a collection of t -

uncoupled harmonic oscillators is not easily applicable to tha!(t) = f dt'[Ra(t) = Rp(t) - Ry H(t') - Ra(t)]-Ry(t') - f(t').

coupled case. Macek postulated a Gaussian form and deter- 0

mined the coefficients of the various terms by comparing the (3.6

resulting propagated wave function to the direct solution of

the Schrdinger equatiori13]. The result is The derivation, though more tedious, is very similar to

that performed with scalar functions in section Il. To outline

G(x,t;x",00=(x|U,[s]|x") the main points, the forward-backward propagator matrix

=N(t)exp(—X-A(t) -x—%-B(t) - x’ takes the form

—%-C(t)-x"=D(t)-x' —E(t)-x), (3.2
. o (XU [sTIU,[s"]Ix")
whereN(t) is a(scalaj normalization constani(t), B(t),
andC(t) are matrices, an®(t) andE(t) are vectors given

by the equations _ 27NL (H)N_(1)
- |det(i C(t))|
A= 55 Re(1)-Ry '(1), (339 X exp{X- B(t) - x—X' - B(t) - X'
i +D_ (1) x=D. ()X }Sx=Xx"+y(1)), (3.7
B(t)=— 57 Ra(1)-Ry (1), (3.3b
i where
=5 [Rp(H)]™H, (3.39
i v
()= - Ry () u(t), (3.3 y0= [[dURy(e)[L)-1 0] @8

= - b When the Gaussian integration is completed, the influence
- _ 1, i AW ’ y
E() h [Re(0)] fodt Ro(t)-f(')  (3.39 functional is feasibly recast in exponential fofiis*,s™]
=exd®(t)]. The real and imaginary parts of the influence
and phase® (t) become, respectively,

N(t)={def27iR,(1)]} 2 Re d(t)

~ 50w -t R - R - i LI
Xex% 27 (U(t) U(t) U(t) Rb(t) Rb (t) U(t) :_E Odt,fodt”(f-%—(tl)_f—(t,))

n f tdt’T(t’)~u(t’)) ] (3.30) MU, 8)- (L () +F- (1), (3.9
0

where the driving force i$(t) =s(t)c(t), the square matrix and

functions R, p(t) are classical trajectories of the force-free
harmonic bath that satisfy the equation Im ®(t)

Rap(t) + 0?(t)-Rap()=0 (3.9 _ 1 tdt’ft,dt”(f}(t’)—"f‘_(t’))
2h Jo 0
with initial conditions
“My(t',t", B) - (F (t") +T_(1")), (3.10
Ra(0)=1, R4(0)=0,
where
Rp(0)=0, R,(0)=1.

M (t",t",8)=1Ry(t')- w(0) - coth BAw(0)/2]- Ry(t"
and the trajectory(t) is determined by Newton’s equation, il A=2Ry(1) w(0) 1Ahw(0)/2]-Ry(t")

IR,(t") - @ X(0)coth 7 Bw(0)/2]- Ry(t”
(1) + w2() - u(t) + (1) =0, 3.5 T 2Ra(t)- @ (0)cotll 7 fo(0)/2] Re(1)
starting from a static position(0)=0 and u(0)=0. Note ~ and

that both R(t)-R™%(t) and B(t) are symmetric matrices. ~ _
Again, we employ the Green’s function technique to obtain M,(t,t")=3[Ra(t")-Rp(t") — Ry(t") - Ry(t")].
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Since M, is a symmetric matrix, the influence functional
assumes the form

5°F
Sat(t/) Sat(t7)
OsT(t')dsT (1) s s-=0
11

== 77 5 T{TE') - x(t')E(t") - x(t")e )}

F[s+,s_]=exp{ —% fotdt’J:dt"(s+(t’)—s—(t'))

1
% [a(t,,t”)SJr(t”)_ a*(tr,t//)s(tn)]} , = F a(t’ _t”)(é(t,) . X(t’)ﬁ(t,’) . X(t"))

(3.11 - 512 Ot —t")(T(t") - x(t")E(t")-x(t")),  (3.14

where the phase kernel is where T is the chronological time-ordering operator, the

brackets denote the ensemble average with respect to the
initial density matrix, and the coordinate operators are in the
interaction representation. Comparing the two formulas, one
recognizes that

a(t! 1) = (&(t') - Xt E") - x(t")).

a(t', t")=T(t") - (Mq(t",t", B) +I1M,(t',t")) - c(t")

=T(t')-M(t' ", B)-o(t"). (3.12 (3.19

) Recall that the system-bath coupling termHs,(t) = s¢(t)
In the above equation the temperature dependence of the Thus thea(t',t”) enjoys a nice interpretation: it is the
kernel has been suppressed. According to these results t@@tocorrelation function of the force operating on the system
influence functional for a multidimensional time-dependentpy the bath. Note that the derived result holds for the most
harmonic bath takes the same form as that for a onegeneral influence functional of Gaussian form.
dimensional oscillator.

IV. PHASE KERNEL AND FORCE AUTOCORRELATION
FUNCTION

Since the phase kernel(t’,t”) is seen to contain all in-

formation about the couplings to the bath, one expects thig

function to be related to the force the system experiences. |
the case of a static bathy(t’,t”) is equal to the autocorre-
lation function of that forcg3,4]. As shown below, this is
also true of a time-dependent bath. From E8.11) one
readily works out the second-order functional derivative,
namely,

5°F
Sst(t")dst (1) st =0
1
== 72 {00 —t)a(t',t")+ 0t~ t")a(t",t")},

(3.13

With the definition of the influence functional E(L..2), tak-
ing the second functional derivative gives

The real and imaginary parts of the influence functional
correspond to the classical and quantum contributions, re-
spectively, and display different features in temporal locality.
For a static harmonic oscillator bath, it has been shown that
the temporal nonlocality in the classical factor can be re-
moved by introducing auxiliary fields, but quantum nonlo-
cality defies such localizatiofl4]. One may draw the same
onclusion upon recognizing that the real phase kernel can
Be written as the product of two functions of one time argu-
ment.

V. SUMMARY

Using the propagator derived by Macgk3], we have
derived the influence functional from a bath of coupled,
time-dependent harmonic oscillators. It turns out that the in-
fluence functional is determined by the classical trajectory of
the undriven harmonic oscillator and that the kernel of the
phase functional is the force-force autocorrelation function.
These features are similar to the static harmonic oscillator
bath. Note, however, that the classical trajectory of the time-
dependent oscillator defies an analytic solution. To imple-
ment the influence functional in practical problems one
should resort to numerical or approximate solutighs,16.
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